8x^2-65x-63=(5x+3)

Simple and best practice solution for 8x^2-65x-63=(5x+3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x^2-65x-63=(5x+3) equation:



8x^2-65x-63=(5x+3)
We move all terms to the left:
8x^2-65x-63-((5x+3))=0
We calculate terms in parentheses: -((5x+3)), so:
(5x+3)
We get rid of parentheses
5x+3
Back to the equation:
-(5x+3)
We get rid of parentheses
8x^2-65x-5x-3-63=0
We add all the numbers together, and all the variables
8x^2-70x-66=0
a = 8; b = -70; c = -66;
Δ = b2-4ac
Δ = -702-4·8·(-66)
Δ = 7012
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{7012}=\sqrt{4*1753}=\sqrt{4}*\sqrt{1753}=2\sqrt{1753}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-70)-2\sqrt{1753}}{2*8}=\frac{70-2\sqrt{1753}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-70)+2\sqrt{1753}}{2*8}=\frac{70+2\sqrt{1753}}{16} $

See similar equations:

| 2((0.65x-32500)-300000)=(0.65x-107250) | | 3x-2.6=x+9.2 | | 4=y/8+1 | | 2x+17=16-4 | | 4x-3=x+10 | | −6/t−7=17 | | 4b+5=13 | | (5x-66)-30=(5x-66) | | -3(3)+y=15 | | X^2+x+7=19 | | 6x=2x^2/3 | | -8p+3=-125 | | 2x5=17 | | 36=((2x+2)(3x))/2 | | x-5(-4)=20 | | u/2+11=26 | | 72=6x(x+1) | | (x2+6x+9)3/4-13=14 | | -3(x+5)-2=-32 | | |2x|=4 | | 6x2+-14x+4=0 | | 4x-1=9x-22 | | 3(x-3)-12=-9 | | 68+y=96+X | | 3+9p^2=4 | | (6x+6x)+3(2+3)=39 | | 10x+4=1440 | | 5(x+1)+5=-10 | | 6x-2=5x+36 | | 10x-10x+2x=20 | | 12=x÷5-8 | | -87x=135 |

Equations solver categories